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Perturbation theory for kinks and its application for multisoliton interactions in hydrodynamics
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Using an integrable Gardner equation as an example, a perturbation theory is developed for systems in which
limiting-amplitude solitons exist in the form of a pair of distanced kinks. Approximate equations describing
multisoliton interactions are derived and further used for modeling the evolution of an arbitrary set of solitons.
The results are compared with an exact solution and numerical results. The theory is applied to data from
observation of a train of strongly nonlinear internal waves in the ocean.
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I. INTRODUCTION

Interaction of solitary waves is now a classical proble
being solved by exact methods such as the inverse scatt
method~see, e.g.,@1#! and by means of perturbation theori
~see@2,3# and references therein!. The latter are applicable to
both integrable and nonintegrable equations, and in so
cases they can be preferred over exact methods even
integrable equations. Indeed, if a sequence of many soli
with an arbitrary amplitude distribution is given as an init
condition, the use of this condition to obtain the spec
exact solution may be a difficult problem itself, and the c
responding results are often physically unclear.

To demonstrate the application of the theory to be d
cussed below, we consider an integrable equation, the
called Gardner equation~also named combKdV, extende
KdV, etc.! which is a generalization of the Korteweg–d
Vries ~KdV! equation containing both quadratic and cub
nonlinearities:

F t16~F2F2!Fx1Fxxx50. ~1!

This equation has been considered in numerous papers~e.g.,
@4,5#!. In particular, it has important applications in physic
oceanography~see an example in Sec. III!. The choice of an
integrable equation will enable us to compare the appro
mate solutions with those following from exact solutions.
the same time, the suggested method is not based on int
bility and can evidently be employed for nonintegrable s
tems.

The known feature of solitary solutions of this equation
the existence of a soliton with a limiting amplitudeAs51
such that when the amplitude approaches this quantity,
soliton becomes close to two separated fronts, or kinks,
the distance between them tends to infinity.

In this paper, multisoliton interactions in the framewo
of this equation are considered. An approximate approac
be used here stems from the direct perturbation method
solitons developed previously by two of the authors@6#. This
method was used to describe the interaction of locali
waves as a process similar to a collision of classical partic
However, a straightforward application of the correspond
scheme to multisoliton interactions in the framework of E
~1! proves to be insufficient for the following reasons. Fir
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the longer solitons with amplitudes close to the limiting o
can be deformed in the course of interaction. Second, fo
set of multiple solitons, it is constructive to describe su
‘‘collective’’ parameters as soliton amplitudes or positio
~phases! in terms of the space-time modulation of these p
rameters.

The theoretical approach suggested below represen
soliton as a compound of two kinks and uses the method
matched asymptotic expansions for kinks upon retaini
along with a ‘‘corpuscular’’ description of solitons as pa
ticles, some wave properties of the kink sequence—i.e.,
finite velocity of the perturbation~‘‘envelope’’! propagation
in the course of interaction as suggested in@7#. This aspect is
a similarity with Whitham’s theory for nonlinear quasiper
odic waves with slowly varying parameters@8#. However,
here we do not assume that the basic solution is per
ic. The solutions obtained in such a way are compared w
the exact solutions and numerical results. Finally, gene
results are applied to oceanographic data describin
strongly nonlinear solitary internal wave train.

II. GENERAL SCHEME

The known solitary solutions to Eq.~1! can be represente
as

Fs~x,t !5
k

2 F tanhS k

2
~x2k2t1D! D

2tanhS k

2
~x2k2t2D! D G , ~2!

whereD5k21 tanh21(k) and the parameterk lies in the range
~0,1!. At smallk this solution coincides with the KdV soliton
At the other limit, whenk is close to unity, the solution can
be approximated as

Fs~x,t,«!'
12«

2 F tanhS 12«

2
~x2k2t !1

1

4
ln

2

« D
2tanhS 12«

2
~x2k2t !2

1

4
ln

2

« D G , ~3!
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where «512k. As seen from Fig. 1, this expression pr
vides a good approximation for the exact solution~2! even
when the soliton is relatively far from the limiting one—u
to, say,«50.4.

In the limit of k51 the solution tends to a pair of infi
nitely distanced kinks, each propagating at the velocityk2

51:

F6~x,t !5
1

2 F16tanh
1

2
~x2t !G . ~4!

Respectively, a strong soliton is close to a compound
two kinks of different polarities separated by an interval 2L
large in comparison with the characteristic kink length:

Fs~x,t !uk→1'F11F2215
1

2 F tanhS 1

2
~x2t1L ! D

2tanhS 1

2
~x2t2L ! D G . ~5!

The latter expression is represented in a form character
of the method of matched asymptotic expansions: the s
tion consists of two regions of fast variation of the functi
Fs ~in this case, kinks! separated by a region of slowly vary
ing or almost constant solution~a plateau whereFs'1).

The form, Eq.~5!, provides an incentive to represent
zero approximation for a generalN-soliton solution,FNs

(0) , as
a sum of 2N noninteracting kinks of alternating signs:

FNs
~0!~x,t !5

1

2 (
i 51

2N

~21! i 11 tanh
1

2
@z2Si~«t,«x!#, ~6!

wherez5x2t and the phasesSi are slowly varying func-
tions of x and t. Here« is a small parameter of order 12k.

An algorithm for the construction of a general solutio
consists of finding local solutions in the vicinity of each kin

FIG. 1. Soliton profiles at four different values of the parame
«512k: 1026, 1024, 0.1, and 0.4. Solid lines: exact solutio
Dashed lines: approximate solution~the difference is noticeable
only for the relatively small solitons with 12k50.1 and 0.4!.
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and their subsequent matching. The full solutionF i(x,t) in
the vicinity of an i th kink is represented as an asympto
series in«:

F i~x,t !5F i
~0!~z2Si !1 (

n51

2N

«nF i
~n!~z2Si ,«t,«x!, ~7!

where F i
(0) is a kink of the corresponding sign and ea

perturbationF (n) is to be found as a function ofz2Si from
a linear ordinary differential equation~ODE! that appears
after substituting Eq.~7! into Eq. ~2! and expanding in pow-
ers of«:

L̂ iF i
~n!5Hi

~n!~F i
~0! ,...,F i

~n21!!. ~8!

Here

L̂ i5
d

dz F211
3

2
sech2

1

2
~z2Si !1

d2

dz2G ~9!

is a variational operator appearing after linearization of E
~1! at the i th kink and Hi are functionals obtained from
lower-order approximations; in particular,Hi

(1) depends on
F i

(0) and the derivatives of slowly varying phase
Si—namely,

Hi
~1!5S ]Si

]t
1

]Si

]x D ]F i
~0!

]j
12

]Si

]x

]3F~0!

]j3 . ~10!

Here and in what follows we omit the factor«.
In the intervals between kinks the corresponding lo

perturbations must be matched. The solutionsF i5w i within
these intervals are represented by a series analogous to
~7! in which the main termw i

(0) is equal to 1 for soliton tops
and 0 for intervals between solitons. The perturbationsw i

(n)

satisfy a system similar to Eq.~8!:

L̂0w i
~n!5hi

~n!~w i
~0!
¯w i

~n21!!, L̂05
d

dz F211
d2

dz2G .
~11!

Here the functionalshi
(n) are represented in a form analogo

to Eq. ~10!. It should be noted thathi
(1)50 becausew i

(0) are
constants~either 0 or 1!.

In the first approximation, it is necessary to match pert
bations F i

(1) at two sides of the kink with the respectiv
perturbationsF i 21

(1) and F i 11
(1) . To this order, the exponen

tially decreasing asymptotics of neighboring zero-ord
kinks must be included in the points located far from t
kink centers—namely,

F i 21
~0! @~z2Si 21!→`#5H e~2z2Si 21! ~odd i !,

12e2~z2Si 21! ~even i !,
~12!

and

r
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F i 11
~0! @~z2Si 11!→2`#5H 12ez2Si 11 ~odd i !,

ez2Si 11 ~even i !.
~13!

These asymptotics are assumed to be of order« in the vicin-
ity of the neighboringi th kink—i.e., exp@2uSi612Siu#;«.

It is essential that the same exponents form the first-o
solutions w i

(1) between the kinks: since, as mentione
hi

(1)50, Eq. ~11! yields w i
(1)5Ci1ez1Ci2e2z1Ci3 with

constantCi1,2,3. It is constructive to explicitly single out the
asymptotics given by Eqs.~12! and ~13! in the first-order
local solution:

F i
~1!5F̃ i

~1!1~21! i~e1~z2Si 11!2e2~z2Si 2 i !!. ~14!

Then we impose a condition of finiteness for allF̃ i
(1) . Now

the matching procedure is reduced to determination of c
ficients Ci1,2,3, and a general solutionFNg

(1) in the first ap-
proximation can be represented as a superposition of l
solutionsF i

(1) minus their common asymptoticsw i . As a
result, exponential terms inF i

(1) and w i
(1) eliminate each

other, and forN solitons we have

FNg
~1!5(

i 51

2N

~F̃ i
~1!2F̃ i 1

~1!!,

where

F̃ i 1
~1!5F̃ i

~1!~z→`!5C3i5F̃~ i 11!
~1! ~z→2`!5F̃~ i 11!2

~1! .
~15!

As in other asymptotic perturbation schemes@3#, the con-
ditions of finiteness ofF̃ i

(1) as solutions of Eq.~8! and, con-
sequently, of the general solutionFNg

(1) are equivalent to the
following orthogonality~compatibility! conditions:

E
2`

`

F i z
~0!dzE

0

z

H̃ i
~1!~z,t,r!dz850, ~16!

where

H̃ i
~1!5S ]Si

]t
1

]Si

]x D ]F i
~0!

]z
12

]Si

]x

]3F i
~0!

]z3

2~21! i L̂ i„e
2~j2Si 21!2e~j2Si 11!

…. ~17!

After substitution ofF i
(0) and integration, we obtain th

equations for the kink phases:

S ]Si

]t
1

]Si

]x D524@e2~Si 112Si !2e~Si 212Si !#. ~18!

The perturbation, Eq.~15!, is limited at allz, but it is not
uniformly valid yet; namely, the ratioFNg

(1)/FNg
(0) is not small

in areas between solitons where the zero-order functio
itself small.

At this point, the explicit form of the perturbation, Eq
~15!, satisfying Eqs.~8! and ~9!, can be represented as@7#
01661
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F~1!5
1

4 (
i 51

2N

~21! i 11FdSi

dt
tanhS j2Si

2 D1S ]Si

]t
13

]Si

]x D
3S j2Si

2 D cosh22S j2Si

2 D G , ~19!

whered/dt5]/]t1]/]x is the derivative along the kink tra
jectory. At largeuju the ratio of the last term in square brac
ets to the zero-order solution increases in proportion touju. To
eliminate this peculiarity, the following condition should ev
dently be met:

]Si

]t
13

]Si

]x
50, i 51,2,...,2N. ~20!

Finally, anN-soliton solution taking interactions into ac
count can be represented as

FNs
~0!1FNs

~1!5
1

2 (
i 51

2N

~21! i 11S 12
]Si

]x D tanh
1

2
@z2Si~x,t !#.

~21!

The slowly varying coefficients (12]Si /]x)/2 in this
sum arex derivatives of the full phases of the kinks@(z
2Si)/2#, just as the factork/2 in the stationary soliton, Eq
~2!, is the x derivative of the arguments of hyperbolic ta
gents. This means that the expression~21! represents an
N-soliton solution as a superposition of quasistationary s
tons.

According to Eq.~20!, in this approximation the varia
tions of kink phases propagate as stationary ‘‘envelo
waves,’’Si(x,t)5Si(h5x23t), with a velocity 3 times the
velocity of ‘‘carrier’’ stationary solitons of a limiting ampli-
tude. By analogy with quasiharmonic waves, the veloc
vg5dv/dkK5153, wherev(k)5k3 plays the role of the
dispersion equation for a soliton, Eq.~2!, can be interpreted
as the group velocity for a set of solitons.

As a result, the partial-derivative equations~18! are re-
duced to the ordinary-difference, Katz–van Moerbeke eq
tions

dSi

dh
52~e2~Si 112Si !2e2~Si2Si 21!!, ~22!

which realize the Ba¨cklund transform for Toda equations@9#.
After differentiating, this system transforms to two Toda la
tices:

d2Si

dh2 54~e2~Si 122Si !2e2~Si2Si 22!!. ~23!

Equation~23! describes two independent sequences~sub-
systems!, one for even-numbered kinks and another for od
numbered ones, which can be interpreted as frontal and t
ing edges of solitons, respectively. Equation~22! serves as
coupling conditions for these two subsystems. According
Eq. ~22!, in our case the Ba¨cklund transform is degenerate
~the transform parameter is zero! and, consequently, the so
4-3
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lutions to the subsystems~22! have a similar structure, pos
sibly differing only in their parameter values~see below!.

Let us now compare the approximate solution with t
exact one. It is remarkable that the exactN-soliton solutions
to the Gardner equation can be represented@7# in a form
similar to Eq. ~21! upon replacement of the approxima
phasesSi(h) by the exact ones,2u i(x,t). The functions
eu i (x,t) are found as the rootszp

(6) (p51,2,...,N) of two al-
gebraic equations( i 50

N ap
(6)zp50 for kinks with odd (u i

5up
(1) , i 52p11) and even (u i5up

(2) , i 52p) numbers of
i, respectively. The coefficientsap

(6) are related to the root
zp

(6) by the Vieta’s theorem and have the following forms

aN
~6 !51,

2aN21
~6 ! 5 (

p51
exp~2up

~6 !!5 (
p51

N

exp~hp6kpDp!,

aN22
~6 ! 5 (

1<p,p2

N

exp@2~up1

~6 !1up2

~6 !!#

5 (
1<p,p2

N

exp~hp1
6kp1

Dp1
1hp2

6kp2
Dp2

1Ap1p2
!

¯

~21!Na0
~6 !5expS 2 (

p51

N

up
~6 !D 5expS (

p51

N

~hp6kpDp!

1 (
1<p1,p

N

Ap1pD . ~24!

Here hp5«p(x23t)2«p
2(32«p)t1hp0 , kpDp5tanh21 kp ,

eApq5(kp2kq)2/(kp1kq)2, and«p512kp . The parameter
kp corresponds to the expression~2! for a pth soliton.

An important feature of this system in our case is that
phasesu i are slowly varying functions ofx and t. Indeed,
their space-time scales are determined by the param
«p

21, which are large whenkp21 is small and exceed unit
for all possible values ofkp . In turn, the smallness of all«p
and ~similarly to what was supposed previously for e
@2uSi612Siu#) of the functionsqml5exp(ul

(6)2um
(6)) ~herem

. l ) enables one to expand functionsan
(6) in a series

~21!naN2n
~6 ! 5expS 2 (

p51

n

up
~6 !D @11O~qml!# ~25!

and approximate the variables ashp5«ph1O(«p
2t). Thus

the expression~24! acquires a simpler form

aN
~6 !51,

2aN21
~6 ! 5e2u1

~6 !
5 (

p51

N

e«ph1h0p6dp,
01661
e
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aN22
~6 ! 5e2u1

~6 !
2u2

~6 !

5 (
1<p1,p2

N

e~«p1
1«p2

!h1h0p1
1h0p2

6dp1
6dp2

1Ãp1p2,

¯

~21!Na0
~6 !~h!5expS 2 (

p51

N

up
~6 !D 5expS (

p51

N

~«ph1h0p

6dp!1 (
1<p1,p2

N

Ãp1p2D . ~26!

Here dp5(1/2)ln(2/«p) and exp(Ãp1p2
)5@(«p1

2«p2
)/2#2 are,

respectively, the leading terms in expansions of the functi
kpDp andAp1p2

from Eq. ~24! in powers of«p . As follows
from Eq. ~26!, an explicit dependence of phases on the
efficientsaN2p

(6) and, consequently, onh, has the form

up
~6 !~h!5 lnFaN2p11

~6 ! ~h!

aN2p
~6 ! ~h!

G , h5x23t. ~27!

It can be shown that the function~27! satisfies the Toda
equation~23!. This means that the approximate solution, E
~21!, together with Eqs.~26! and ~27!, is equivalent to the
first term in the corresponding expansion of the exact mu
soliton solution. It is important that the exact solution f
phasesu (6) can be expanded in powers of the parameters«p

and exponentsqml for any«p,1 and (um
(6)2u l

(6)).0—i.e.,
for arbitrary parameters of interacting solitons. This is tr
for all t except for those in which the neighboring solito
completely overlap.

III. TWO-SOLITON INTERACTION

A similarity between the general structures of the appro
mate and the exact solutions enables one to evaluate a
cability of the approximate result by comparison of pha
variablesSi(x,t) andu i(x,t). Let us consider a two-soliton
interaction as an example. As follows from Eq.~26!, the
exact solution foru i at N52 reads~see also@4#, where a
two-soliton solution was found in a more cumbersome for!

u1,25«1h7D11m1t2cosh21F22«1

«2

3cosh~«2h6D21m2t !G , ~28!

u3,45«1h7D11m1t2cosh21F22«1

«2

3cosh~«2h6D21m2t !G . ~29!

The corresponding approximate expressions forSi follow
from Eqs.~22! and ~23! in the form
4-4
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S1,25«1h7d12 lnF 2

«2
cosh~«2h6d1!G , ~30!

S3,45«1h7d11 lnF 2

«2
cosh~«2h6d1!G . ~31!

Hereh5x23t and

2«65«16«2 , «1,2512k1,2,

2m653~«1
26«2

2!2~«1
36«2

3!,

2D65D16D2 , D1,25 ln
22«1,2

«1,2
,

2d65d16d2 , d1,25 ln
2

«1,2
.

The functions cosh21 in Eqs. ~28! and ~29! can be ex-
panded into a series uniformly converging at all«P(0.1):

cosh21~u6!5 ln~2u6!2 (
n51

`
~2n21!!!

2n~2n!!!
u6

22n , ~32!

where

u65
22«1

«2
cosh~«2h6D21m2t !.

It is easy to see that the phasesSi in Eqs.~30! and~31! are
close to the main terms of these expansions, ln(2u6); the
difference is of order«1,2

2 . Correspondingly, the constantsd6

and 2/«2 in the approximate expressions coincide with t
respective exact parametersD6 and (22«1)/«2 up to the
order ofO(«1,2).

It is important that the absolute values of the main ter
in these expansions, ln(2u6), exceed the remaining sums fo
all values ofx, t, and«P(0.1). This enables one to succes
fully use the approximate solutions for interacting solito
even when their parametersk1 andk2 and, consequently, th
amplitudes are not very close to unity. Due to the unifo
validity in x and t, the approximate formulas can be used
all stages of interaction, even when the solitons are stron
overlapped and can not be visually identified.

Figure 2 shows a comparison between the exact and
proximate solutions for the two-soliton interaction at«1
51026 and«250.4. It is seen that the approximate and e
act solutions almost coincide at a point close to that of
maximal overlapping of solitons (t521.5), where the per-
turbation theory should, in principle, be inapplicable. At t
same time, due to slightly different values of soliton velo
ties, initial distances between the solitons at which they
proach the overlapping point differ for the two solutions.
the initial condition is given for well-separated solitons at t
same distance, they would overlap in different points, but
shapes of these waves would be almost identical.

Note that the approximate solutions can be further
proved by adding terms of orderm1t in Eqs.~30! and ~31!,
01661
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similarly to those in Eqs.~28! and~29!. It can be shown that
on that way the difference between the approximate and
act solutions, which is seen in Fig. 2, becomes even m
smaller.

IV. ENVELOPE SOLITONS AND KINKS

Earlier it was shown@6# that in the framework of the
direct perturbation method, the interaction of solitons in t
KdV equation corresponds to that of two repulsive partic
and that perturbation of a periodic set~‘‘lattice’’ ! of such
solitons can be described by the Toda system. As a re
these perturbations can propagate as envelope waves f
ing, in particular, Toda solitons and periodic envelope l
tices; in turn, their perturbations also satisfy a Toda syst
thus forming a ‘‘lattice hierarchy’’—the same is true for, e.g
MKdV and sine-Gordon equations. According to the resu
of this paper, Gardner solitons are also repulsive. As alre
mentioned, the specifics of the processes considered he
that the soliton is treated as a compound of two kinks and
a result, the acts of interaction for frontal and trailing kin
of each soliton are separated. This is especially impor
when a large number of solitons participate in the interacti

Note first that Eq.~23! has two solutions in the form o
infinite periodic trains~lattices! of solitons:

Si5 iL1Vh1H 0 ~odd i !,

d ~even i !.J ~33!

These trains correspond to periodic solutions of the ba
equation~1! having a periodL and a characteristic soliton
lengthd ~such as2L,d,L); as above,h5x23t. Substi-
tuting these expressions into Eq.~22! yields a dispersion re-
lation

3V522e2L coshd, ~34!

FIG. 2. Interaction of two solitons. Solid line: exact solutio
Dashed line: approximate solution. Soliton parameters are«1

51026 and«250.4.
4-5
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which relates the velocity of a periodic wave, 113V, in Eq.
~1! to the parametersL andd.

A general solution is described by the Toda equation~23!
corresponding to the frontal and trailing kinks that are rela
by the Bäcklund transform, Eq.~22!. In turn, these system
have solitary solutions which can be considered as pair
kinks and are essentially the envelope solitons with resp
to the solitons in the basic equation~2!, modulating the se-
quences~33!. A similar result has earlier been obtained f
soliton lattices in the KdV equation@3#. However, in the
present case, Eqs.~22! and~23! allow two different types of
localized structures that correspond to the excitation of T
solitons either in one or in both subsystems. The respec
steady-state solutions are

Si~h!5 iL1Vh1H 0 ~odd i !,

ln
cosh@l~ i 22!2bh#

cosh@l i 2bh#
~even i !,

~35!

where 3V522e2L cosh 2l andb5e2L sinh 2l, and

Si~h!5 iL1Vh

1H ln
cosh@l~ i 22!2bh#

cosh@l i 2bh#
~odd i !,

d1 ln
cosh@l~ i 222g!2bh#

cosh@l~ i 2g!2bh#
~even i !,

~36!

where 3V522e2L cosh 2l, b5e2L sinh 2l, and sinh2@l(1
2g)#5e2d sinh@l2(11g)#. Due to the symmetry of the sub
systems, odd and even numbers fori in these expressions ca
be transposed. Note that in the first case,d562l, whereas
in the second,d andg are independent parameters.

In the first of these envelope waves, Eq.~35!, the kinks in
one of the subsystems~frontal or trailing kinks! are eventu-
ally shifted at the distance of 4l while the second subsystem
remains unperturbed. These waves represent a sort of
change:’’ after the transition, the initial soliton widths b
come the distances between them and vice versa. T
modulation waves may be called ‘‘envelope kinks.’’

In the waves described by Eq.~36! both subsystems o
kinks are shifted at the same distance of 4l. In this case
wave profiles in the initial and final states are the same. S
waves can naturally be called envelope solitons.

Envelope solitons and kinks can interact in the same w
as it occurs in the basic Gardner equation. Moreover, du
their exponential asymptotics, approximate equations
scribing these interactions must again be Toda systems~22!
and ~23!, which have solutions in the form of ‘‘second
order’’ solitons and kinks. Continuing this process, a ‘‘hie
archy’’ of multiperiodic envelope waves can be construct
It should be accentuated that the specifics of the consid
solitons as compounds of kinks are reproduced at each l
of such hierarchy.
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V. MODELING OF THE EVOLUTION OF INTENSE
INTERNAL WAVES BY A SEQUENCE OF SOLITONS

The Gardner equation~1! has important applications, in
particular in physical oceanography for a description of no
linear internal gravity waves generated by tides in coa
areas of the ocean. Such waves often have a form clos
that of a group of solitons or a ‘‘solibore’’~e.g., @15#!. A
similar equation, with an addition of higher-order dispersi
terms, was first used for this purpose by Lee and Beard
@10# and subsequently by other authors@4,11#. In some cases
it gives a better description of moderately nonlinear inter
wave forms than does the Korteveg–de Vries equation. Ty
cally, however, not enough observational data are provi
in publications to follow the evolution of a soliton grou
upon propagation at large distances. One of the few exc
tions is the Coastal Ocean Probing Experiment~COPE!,
which was performed in 1995 on the northwestern shelf
the United States, off the coast of Oregon. Very strong, ti
generated internal waves were observed there in the form
a train of solitary waves@5,12,13#. In this case the solitons
were so strong that no expansion of nonlinear terms lead
to Eq. ~1! is, strictly speaking, applicable. However, a
shown in @5#, Eq. ~1!, considered as a phenomenologic
model, describes such strong solitons reasonably well
cause for strong solitons it predicts wider solitons than
KdV equation does, and the width of their solitary solutio
only slightly varies in a significant range of amplitudes; bo
these features are consistent with the observational resu

In the case considered, the water stratification contain
sharp vertical variation of density, a pycnocline~see Fig. 2 of
@5#!, and its representation in the form of a two-layer mod
gives a good approximation for the real density profi
Hence we further consider nonlinear internal gravity wav
in a two-layer fluid. In physical variables an equation simi
to Eq. ~1! reads~see, e.g.,@5#!

]h

]t
1c

]h

]x
1ah

]h

]x
2a1h2

]h

]x
1b

]3h

]x3 50. ~37!

Hereh is the deviation from equilibrium of the liquid inter
face,c5Ag(Dr/r)h1h2 /(h11h2) is the propagation veloc
ity of a long wave in the linear approximation,a5 3

2 c(h2

2h1)/h1h2 and a15(3c/8h1
2h2

2)@h1
21h2

216h1h2# are the
coefficients of nonlinearity,b5c h1h2/6 is the dispersion
coefficient,h1 , h2 are the thicknesses of the upper and low
liquid layers, respectively, andDr/r is the relative difference
of liquid densities.

By substituting the variables

h5S a

a1
DF, t5t8

b1/2~6a1!3/2

a3 , x5ct1x8
~6a1b!1/2

a
,

~38!

into Eq. ~37!, we obtain Eq.~1!.
From observations, we accept the following governing p

rameters for the two-layer model:h157 m, h25143 m,
and Dr/r5331023. Then we obtaina59.8231022 s21,
a150.3531022 (m s)21, b576 m3/s, and c50.458 m/s;
hence, for the maximal soliton in dimensional variable
4-6
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hmax5a/a1528 m andVcr5c1a2/6a152c. Maximal ob-
served soliton amplitudes~depressions of pycnocline!
reached 25–27 m; i.e., in the framework of Eq.~37!, these
amplitudes are close to critical.1 For modeling of an interna
wave evolution, the records were taken from the COPE d
for 26 September 1995 at two points: measurements
about 25 km from the shoreline@5# ~site 1! and 20 km closer
to the shoreline@13# ~site 2!. To apply Eq.~2!, the time series
at each of these points was recalculated to get the in
condition h(x,t50) by multiplying all time scales by the
limiting soliton velocity 2c.

According to the above theory, we approximated ea
solitary wave as a pair of kinks. To determine the init
coordinates of the kinks, we used the experimental reco
for impulse amplitudes and for time intervals between th
maximums at site 1. The corresponding dimensionless
tancesSi 112Si between two kinks composing one and t
same soliton~i.e., i is odd andi 11 even! were found ac-
cording to the formula that follows from expression~2! with
D determined from the measured amplitudes:

Si 112Si5 lnS 11aAi /a1

12aAi /a1
D , ~39!

whereAi is the dimensional amplitude of thei th soliton.
The distance between the neighboring kinks that belon

different solitons,Si 112Si at eveni, is determined as a dis
tanceDxi 11,i between the maxima of the corresponding i
pulses minus the half-sum of the distances, Eq.~39!, deter-
mining the widths of these impulses. The distancesDxi ,i 11
are calculated from the measured time intervalsDt i ,i 11 be-
tween soliton maximums at site 1 as

Dxi 11,i5VcrDt i 11,i . ~40!

Here, as above,Vcr52c. The resulting kink coordinates a
site 1 were taken as the initial condition.

The system of first-order ODEs, Eq.~22!, was solved nu-
merically. We modeled the evolution of the groups of ni
impulses~actually, the observed sequence was even lon
but beginning from the tenth impulse, the impulses
seated on a longer tidal depression pedestal and significa
overlapped!. Calculation results were verified in two way
first by direct computations of the basic equation~37! and
then by comparison with the internal wave records at th
mistor site 2 after passing 20 km toward the shore.

Figure 3 shows the initial sequence used for calculati
according to the above theory and for numerical calculati
from the basic equation. The dashed line corresponds to

1In direct calculations for the two-layer model~e.g.,@16#! as well
as in strongly nonlinear evolution equations@17#, the limiting soli-
tary wave amplitude also exists, but for a small density jump i
close to (h22h1)/2. In our case it is about 68 m rather than 28 m
the Gardner model. However, for the amplitudes considered,
solitons are already significantly wider than those in the co
sponding KdV equation, and the Gardner equation gives a g
phenomenological description of them for amplitudes close
hmax.
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perimental observations@5,12# and solid line an approxima
tion of the experimental data according to Eq.~2!. Figure 4
shows the corresponding results of the calculation for
same soliton group at a distance of 20 km. In general,
approximate and numerical results are quite similar in b
cases. In particular, the total duration of the group is pra
cally the same, and the order in which the solitons follo
each other differs only for the seventh and eighth impulse
Fig. 4~a!, where they have already overlapped, unlike in F
4~b!. The differences are due to a small difference in solit
speeds~the same effect is seen in Fig. 2 for the two-solit
interaction!, which can be considered as a measure of e
in the approximate description. Anyway, for such a lar
distance~between 100 and 200 characteristic lengths o
soliton!, the agreement can be considered to be quite sa
factory.

As seen from comparison with the initial state~Fig. 3!, the
group undergoes pronounced changes in the course of pr
gation: the relative positions of solitons have significan
changed. Also, the total duration of the soliton group h
increased from about 5000 s to about 7000 s. Indeed
known, interactions of soliton pairs always lead to ene
flow from the rear soliton to the forward one and, as a res
to the acceleration of the latter~positive phase shift!; this
results in an effective stretching of the group.

Figure 5 gives the idea of observational results for site
It was plotted by using an isotherm restored from the th
mistor chain data obtained by Trevorrow for the same soli
group in the same way as for the data included in@13#. Com-
parison with Fig. 4 shows major similarities in what regar
the disposition of solitons on the time axis.

Note that this behavior is radically different from that
the KdV case, in which solitons tend to acquire the amp
tudes linearly decreasing along the group. The main disc
ancy between the theoretical model and the experiment~for
both sites 1 and 2! is a an almost twofold difference in du
ration of impulses~2–3 min in experiment and 1–1.5 min i
theory!; also, the total group duration increases stronger t

s

e
-
d

o

FIG. 3. Initial condition for the soliton group approximating
COPE experiment observation. Dashed line: experimental d
Solid line: their approximation by Eq.~2!.
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in the theory. This is due to the limited applicability of th
Gardner equation: in more realistic strongly nonline
models @17# the solitons are broader and are supposed
interact longer, due to a smoother dependence of soliton
locities on their amplitudes. Note also that observational d
for the site 2 were available for a deeper isotherm than
site 1; this, along with possible attenuation, is a poss
cause of the decrease of the amplitudes of all impulses in
group in site 2 in comparison with site 1.

VI. CONCLUDING REMARKS

In this paper, a version of the asymptotic perturbat
method for describing multisoliton interactions was su
gested based on consideration of individual kinks and th
subsequent matching. The method combines a descriptio
individual solitons with their collective behavior. For th

FIG. 4. Resulting distribution at a 20 km distance:~a! approxi-
mate solution and~b! numerical solution.
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Gardner equation, the equations for kink interactions are
duced to two Toda systems in which the kink phases pro
gate at a ‘‘group velocity,’’ 3 times the velocity of an ind
vidual soliton. Comparison with the exact two-solito
solution shows that exact and approximate equations ha
similar structure, and their solutions coincide in the first a
proximation and remain close to each other in a wide ra
of parameters of the solitons. Also, such collective structu
as envelope kinks and solitons have been described.
theory is further applied to multisoliton interactions to b
compared with direct computations of the Gardner equat
These results are obtained for soliton groups modeling
real observational data on multisolitonic internal waves
the coastal ocean.

Finally, it should again be emphasized that the integra
Gardner equation was chosen in order to compare the
proximate and exact solutions, whereas the method itse
irrelevant to the feature of integrability: it is based on so
ton ~kink! asymptotics that can be found from linearizatio
of a stationary ODE describing the soliton in any model,
was demonstrated earlier by the direct perturbation met
@6#. It is planned to apply this approach to nonintegrab
equations~e.g., those developed recently for strongly nonl
ear internal waves@14,17#! and to take into account othe
perturbing factors such as small losses and cylindrical div
gence of wave fronts.
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FIG. 5. Experimentally observed resulting distribution at a
km distance~dashed line! and its approximation by Eq.~2! ~solid
line!.
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