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Perturbation theory for kinks and its application for multisoliton interactions in hydrodynamics
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Using an integrable Gardner equation as an example, a perturbation theory is developed for systems in which
limiting-amplitude solitons exist in the form of a pair of distanced kinks. Approximate equations describing
multisoliton interactions are derived and further used for modeling the evolution of an arbitrary set of solitons.
The results are compared with an exact solution and numerical results. The theory is applied to data from
observation of a train of strongly nonlinear internal waves in the ocean.
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[. INTRODUCTION the longer solitons with amplitudes close to the limiting one
can be deformed in the course of interaction. Second, for a
Interaction of solitary waves is now a classical problemset of multiple solitons, it is constructive to describe such
being solved by exact methods such as the inverse scatterifigollective” parameters as soliton amplitudes or positions
method(see, e.g.|1]) and by means of perturbation theories (phasesin terms of the space-time modulation of these pa-
(se€g[2,3] and references thergirThe latter are applicable to rameters.
both integrable and nonintegrable equations, and in some The theoretical approach suggested below represents a
cases they can be preferred over exact methods even fepliton as a compound of two kinks and uses the method of
integrable equations. Indeed, if a sequence of many solitonmatched asymptotic expansions for kinks upon retaining,
with an arbitrary amplitude distribution is given as an initial along with a “corpuscular” description of solitons as par-
condition, the use of this condition to obtain the specificticles, some wave properties of the kink sequence—i.e., the
exact solution may be a difficult problem itself, and the cor-finite velocity of the perturbatioii“envelope”) propagation
responding results are often physically unclear. in the course of interaction as suggestefirin This aspect is
To demonstrate the application of the theory to be dis-a similarity with Whitham’s theory for nonlinear quasiperi-
cussed below, we consider an integrable equation, the s@dic waves with slowly varying parametef8]. However,
called Gardner equatiofalso named combKdV, extended here we do not assume that the basic solution is period-
KdV, etc) which is a generalization of the Korteweg—de ic. The solutions obtained in such a way are compared with
Vries (KdV) equation containing both quadratic and cubicthe exact solutions and numerical results. Finally, general
nonlinearities: results are applied to oceanographic data describing a
strongly nonlinear solitary internal wave train.
O+ 6(P— P D+ D, =0. (1)
This equation has been considered in numerous pae&ys Il. GENERAL SCHEME
[4,5]). In particular, it has important applications in physical  The known solitary solutions to E¢l) can be represented
oceanographysee an example in Sec.)llThe choice of an gs
integrable equation will enable us to compare the approxi-
mate solutions with those following from exact solutions. At

the same time, the suggested method is not based on integra- Py(x,t)= E tanl‘(E(x— k2t+A))
bility and can evidently be employed for nonintegrable sys- ’ 2 2
tems. K
The known feature of solitary solutions of this equation is —tam(—(x— k2t—A)) } )
the existence of a soliton with a limiting amplitude=1 2

such that when the amplitude approaches this quantity, the
soliton becomes close to two separated fronts, or kinks, an%hereA:kfltanhfl(k) and the parametéglies in the range

the distance between them tends to infinity. (0,2). At smallk this solution coincides with the KdV soliton.

In this paper, multisoliton interactions in the framework st the other limit, wherk is close to unity, the solution can
of this equation are considered. An approximate approach tgg approximated as

be used here stems from the direct perturbation method for

solitons developed previously by two of the authl@k This

method was used to describe the interaction of localized D (x.t 8)%1—_8
waves as a process similar to a collision of classical particles. s 2
However, a straightforward application of the corresponding

scheme to multisoliton interactions in the framework of Eq. —tanl-(l_—g(x—kzt)— llnz>
(1) proves to be insufficient for the following reasons. First, 2 4" ¢

1-¢ 2 +l| 2
tan T(X t) an

: ()
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' and their subsequent matching. The full solutibp(x,t) in
_ the vicinity of anith kink is represented as an asymptotic
series ine:

0.9F

08
2N

PixD=C7(E=8)+ X & P ((-§ st,e0), (D)

0.7

06

e o ) where CDi(O) is a kink of the corresponding sign and each
0al : perturbation®" is to be found as a function d@f— S, from
ol | a linear ordinary differential equatiofODE) that appears
‘ after substituting Eq(7) into Eq.(2) and expanding in pow-
02l . ers ofe:

o1} E ~ _
LaW=H"(®, MY (8)
—020 —1‘5 15 20
t Here
FIG. 1. Soliton profiles at four different values of the parameter d 3 1 d?
e=1-k: . 1078, 1074, 01 and 04 Sollq lines: exact §0Iut|on. |‘_i:_ —1+ —sech®= ({—S)+ — 9)
Dashed lines: approximate solutigthe difference is noticeable 4 2 2 d¢

only for the relatively small solitons with-1k=0.1 and 0.3

is a variational operator appearing after linearization of Eq.
wheree=1—Kk. As seen from Fig. 1, this expression pro- (1) at theith kink and H; are functionals obtained from
vides a good approximation for the exact soluti@ even  lower-order approximations; in particularli(l) depends on
when the soliton is relatively far from the limiting one—up q)i(o) and the derivatives of slowly varying phases

to, say,e=0.4. S—namely,
In the limit of k=1 the solution tends to a pair of infi-
nitely distanced kinks, each propagating at the velokfty oS 9S P S, 30
=1 Hf1)=(—+—)—'+2——r. (10)
a x| d¢ X o9&
. 1 1
P (x V=5 1ttanh§(x—t)} (4)  Here and in what follows we omit the facter

In the intervals between kinks the corresponding local
Respectively, a strong soliton is close to a compound oPerturbations must be matched. The solutidns: ¢; within

two kinks of different polarities separated by an interval 2 these intervals are represented by a series analogous to Eg.

large in comparison with the characteristic kink length: ~ (7) in which the main termp{® is equal to 1 for soliton tops

and 0 for intervals between solitons. The perturbatipff

satisfy a system similar to E@8):

1 1
D (X, )| =P T+D —1== tan!‘(z(x—tJrL)

2

Lol =76l 4l" ), Loy 14 g2

1
—tan)'(z(x—t—L) . (5)

(11

The latter expression is represented in a form characteristi|9| . (n) .

of the method of matched asymptotic expansions: the solu- ere the functionalb;™ are represe(r;)ted in a form ag;’;""go“s

tion consists of two regions of fast variation of the function t©© Ed: (10). It should be noted thatj™’=0 becausep;™ are

@, (in this case, kinksseparated by a region of slowly vary- constantdeitherOor3.

ing or almost constant solutiofa plateau wher ~1). In the first approximation, it is necessary to match pertur-
The form, Eq.(5), provides an incentive to represent abationsd)i(l) at two sides of the kink with the respective

T . . ; 1 1 :
zero approximation for a generlisoliton solution®(?, as perturbations®(Y; and ®{; . To this order, the exponen-

a sum of N noninteracting kinks of alternating signs: tially decreasing asymptotics of neighboring zero-order
kinks must be included in the points located far from the

2N kink centers—namely,

1 ) 1
PR =52 (~1) Hanhs [{-S(et,ex)], (6)
'=1 o) e"{7S-1  (odd i),
where /=x—t and the phaseS, are slowly varying func- CiElEm S =)= 1-e 7S-0  (eveni),
tions of x andt. Heree is a small parameter of order-k. (12

An algorithm for the construction of a general solution
consists of finding local solutions in the vicinity of each kink and
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dS §-S\ [dS  _dS
Htam(7>+<ﬁ+3§)

coshz( ?) } , (19

1—ef Si+1 (odd i),

(0) — — —®©|=
Oih[({~S+1) ] e~ Si+1  (eveni).

1 2N
q)(l):_E (_1)i+l
i=1

£-S
2

These asymptotics are assumed to be of ogdarthe vicin- X
ity of the neighboringth kink—i.e., exp—|S-,—S|]~e.

Itis essential that the same exponents form the first-ordef nered/dt= /4t + 9/ ox is the derivative along the kink tra-
solutions ¢{*) between the kinks: since, as mentioned,jectory. At large|¢| the ratio of the last term in square brack-
hM=0, Eq. (11) yields ¢{V=C;;ef+Ci,e ¢+ Ci3 with ets to the zero-order solution increases in proportide] tdo
constantCj, , 3. It is constructive to explicitly single out the eliminate this peculiarity, the following condition should evi-
asymptotics given by Eqg12) and (13) in the first-order dently be met:

local solution:
S IS .
(Di(l):&)§1)+(_1)i(e+(§—si+1)_e‘((‘Si,i))_ (14) W'FSW:O, i=1,2,.., . (20)
Then we impose a condition of finiteness for &@{" . Now Finally, anN-soliton solution taking interactions into ac-

the matching procedure is reduced to determination of coefecount can be represented as
ficients Ciy 3, and a general solutio(() in the first ap-
proximation can be represented as a superposition of local R _ 1
solutions ®{*) minus their common asymptotics; . As a <I>§\?S>+<D§\I1§:§i21 (—p't tanhz [{—Si(x,t)].
result, exponential terms i®* and ¢{*) eliminate each 21)
other, and folN solitons we have

S
=

The slowly varying coefficients (2dS;/9x)/2 in this
sum arex derivatives of the full phases of the kink¢Z
—S)/2], just as the factok/2 in the stationary soliton, Eq.
(2), is thex derivative of the arguments of hyperbolic tan-

2N
W=, BO-B),

where gents. This means that the expressi@l) represents an
5 _ _ 5 N-soliton solution as a superposition of quasistationary soli-
DY =DV((—2)=Cy=D) ({——0)=D{1, . tons.
(15 According to Eq.(20), in this approximation the varia-

tions of kink phases propagate as stationary “envelope
As in other asymptotic perturbation schenjgk the con-  waves,”S (x,t) =S (7=x—3t), with a velocity 3 times the
ditions of finiteness oﬁ)i(l) as solutions of E¢(8) and, con-  velocity of “carrier” stationary solitons of a limiting ampli-
sequently, of the general soluti@hf\,lg are equivalent to the tude. By analogy with quasiharmonic waves, the velocity
following orthogonality(compatibility) conditions: vg=dw/dkc_;=3, wherew(k)=k* plays the role of the
dispersion equation for a soliton, E@), can be interpreted

* (. as the group velocity for a set of solitons.
(0) (1) r_
jﬁxq)iz dg’fo Hi7({,7,p)d{" =0, (16) As a result, the partial-derivative equatiofis) are re-
duced to the ordinary-difference, Katz—van Moerbeke equa-
Where tions
(0) 3¢ (0)
'H(l): ﬁ ﬁ (9(1)' + a_Slﬂ d_s:2(e7(si+173)_ef(sifsi—l)), (22)
' gt ox|) al ax  aLd dn

—(—1)'Li(e" €S-V —elé=Si+0)y, (17)  which realize the Beklund transform for Toda equatiofg].
After differentiating, this system transforms to two Toda lat-
After substitution of ®(®) and integration, we obtain the tices:
equations for the kink phases:

d?s;
| =4(e S+27S) — g7 (§7S-2), (23

Equation(23) describes two independent sequen(sesh-
The perturbation, E¢(15), is limited at all{, but it is not  systemy one for even-numbered kinks and another for odd-
uniformly valid yet; namely, the ratid)f\,lgltb(,\?g)l is not small  numbered ones, which can be interpreted as frontal and trail-
in areas between solitons where the zero-order function isg edges of solitons, respectively. Equati@®) serves as

itself small. coupling conditions for these two subsystems. According to
At this point, the explicit form of the perturbation, Eq. Eq. (22), in our case the Bklund transform is degenerated
(15), satisfying Eqs(8) and(9), can be represented B8 (the transform parameter is zg¢rand, consequently, the so-
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lutions to the subsysten{22) have a similar structure, pos-

sibly differing only in their parameter valug¢see below.

Let us now compare the approximate solution with the

exact one. It is remarkable that the exBesoliton solutions
to the Gardner equation can be represerffddin a form

similar to Eq. (21) upon replacement of the approximate

phasesS,(7) by the exact ones; 6;(x,t). The functions
e are found as the roots,”) (p=1,2,...N) of two al-
gebraic equationss{L,a”'zP=0 for kinks with odd @,

=607, i=2p+1) and even ¢;= 6", i=2p) numbers of
i, respectively. The coefficients,” are related to the roots

(") by the Vieta’s theorem and have the following forms:
aj’'=1,
N

—aﬁ\,{)l:gl exp(— a(pi))zpz,l expl 7, = KA ),

(B g
exd (0pl+6’p2 )]

expl ﬂpli kplA pl+ npzi kpzA p2+ Aplpz)

Here 7,=ep(x—3t) —&3(3—&p)t+ 750, KpAp=tanh tk,,
e”va= (k,—kq)?/(Kp+kg)?, ande,=1-k,. The parameter
ko, corresponds to the expressi@®) for a pth soliton.

An important feature of this system in our case is that th

phasesé; are slowly varying functions ok andt. Indeed,

PHYSICAL REVIEW E9, 016614 (2004

(=) _ _H(i)_o(i)
ay_,=¢€ 1 2

N
— 2 e(sp1+ sp2)17+ 770p1+ nopzt 5p1t 5p2+Ap1p2’
1=p1<py

N N
(—1>Naé*><n>=exp( —p; e;*>> =exp( p; (£p7+ 70p
N
+5p)+ >, Ao,

1=p;<p;

. (26)

Here 5,=(1/2)In(2k,) and exply, ,)=[(sp,—#p)/2]° are,
respectively, the leading terms in expansions of the functions
KpAp andAplp2 from Eq. (24) in powers ofg,. As follows
from Eg. (26), an explicit dependence of phases on the co-
efficientsa{”), and, consequently, op, has the form

a\pi1(m)
ayp(m)

It can be shown that the functiof27) satisfies the Toda
equation(23). This means that the approximate solution, Eq.
(21), together with Eqs(26) and (27), is equivalent to the
first term in the corresponding expansion of the exact multi-
soliton solution. It is important that the exact solution for
phase®)™) can be expanded in powers of the parametgrs
and exponentg, for anye,<1 and @, — 6{*))>0—i.e.,

for arbitrary parameters of interacting solitons. This is true
for all t except for those in which the neighboring solitons
completely overlap.

, m=Xx—3t. (27)

0,7 (m)=In

III. TWO-SOLITON INTERACTION

A similarity between the general structures of the approxi-

dnate and the exact solutions enables one to evaluate appli-

cability of the approximate result by comparison of phase

their space-time scales are determined by the parameteY@riablesSi(x,t) and 6i(x,t). Let us consider a two-soliton

s‘;l, which are large whek,—1 is small and exceed unity

for all possible values df,. In turn, the smallness of adl,

and (similarly to what was supposed previously for exp

[—|S=1—S|]) of the functionsg,=exp@*—6”) (herem
>1) enables one to expand functioa$™ in a series

[1+O0(am)] (29

n
(- 1)”a§f_)n=exp( -3 0

and approximate the variables gg=¢,7+ O(sgt). Thus
the expressioli24) acquires a simpler form

ay’'=1,
N

_g(*)
_ag\li—):l_:e 01 :2 esp77+7]0pt5p’
p=1

interaction as an example. As follows from E@®6), the
exact solution forg; at N=2 reads(see alsq4], where a
two-soliton solution was found in a more cumbersome form

2_8+

0,,=¢. nFA,+u,t—cosh!

XCOSKSniA-’-Iut)}, (28
—e,
O34=¢ nFA,+u,t—cosh?
XCOSh:SniA-F,u,t)}. (29

The corresponding approximate expressionsdiollow
from EQ@s.(22) and(23) in the form
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2 1 1
Sio=e np¥d.—In S—COSKS, VE IR (30 1=-25 t=-10
- ® 0s 05
. 2 AN
53,4:8+ n+o,+ In S—COSh:S, nx 0.)|. (31) %o —20 0 20 40 %o 20 40
! t=—6 ! t=—15
Here »=x—3t and = g
® o5 05
28i:81i82, 81,2:l_kl,21
[} [}
—40 20 40 —40 20 0 20 40
2 2 3 3
2u.=3(e1*tes)—(e1*ey), n
! =6
2_812
ZAi:AliAz, A1'2=|n - y ° 0.5
€1,2
%o 20 40
2 n
25i:51i 52, 51‘2:"’]_.
€12

FIG. 2. Interaction of two solitons. Solid line: exact solution.

The functions cosht in Egs. (28) and (29) can be ex- Dashed line: approximate solution. Soliton parameters sre
: —10-6 -
panded into a series uniformly converging atzd (0.1): =10"" ande,=0.4.

“(2n—1)!! similarly to those in Egqs(28) and(29). It can be shown that

-1 —-2n . .

cosh “(u.)=In(2u.)— Z Znizmit Y= (320 on that way the difference between the approximate and ex-
n=t h act solutions, which is seen in Fig. 2, becomes even much

where smaller.

2—¢
+ costie_ A _+u_t). IV. ENVELOPE SOLITONS AND KINKS

Us.=

Earlier it was shown6] that in the framework of the

Itis easy to see that the phasksn Eqgs.(30) and(31) are  direct perturbation method, the interaction of solitons in the
close to the main terms of these expansions,unj2the KdV equation corre_:sponds to that_of two r_epulsive particles
difference is of ordet?,. Correspondingly, the constants ~ @nd that perturbation of a periodic sétattice”) of such
and 2t _ in the approkimate expressions coincide with thesolitons can be. described by the Toda system. As a result,
respective exact parameteks. and (2—¢.)/e_ up to the f[hesg pertu.rbauons can propagate as envglope waves form-
order of O(e1 ). ing, in part|cular,_ Toda solltpns and perl_odlc envelope lat-

It is important that the absolute values of the main termdIC€S; In turn, ttlelr_pertl_eranon? also satisfy a Toda system,
in these expansions, Ing2), exceed the remaining sums for thus formmg_a lattice hlerarchy —the same is true for, e.g.,
all values ofx, t, ande € (0.1). This enables one to success-MKdV and sine-Gordon equations. According to the results
fully use the approximate solutions for interacting solitons®' thiS paper, Gardner solitons are also repulsive. As already

even when their parameteks andk, and, consequently, the mentioned, the specifics of the processes considered here is
amplitudes are not very close to unity. Due to the uniformthat the soliton is treated as a compound of two kinks and, as

validity in x andt, the approximate formulas can be used at? result, the acts of interaction for frontal and trailing kinks

all stages of interaction, even when the solitons are strong| fheachl soliton a[)e sefpar?ted. Th's. IS espec;]ally Important
overlapped and can not be visually identified. en a large number of solitons participate in the interaction.

Figure 2 shows a comparison between the exact and ap- Note first that Eq.(23) has two solutions in the form of

proximate solutions for the two-soliton interaction &f infinite periodic trainglattices of solitons:
=10 °® ande,=0.4. It is seen that the approximate and ex-
act solutions almost coincide at a point close to that of the _ 0 (oddi),
maximal overlapping of solitonst€ —1.5), where the per- Si:'A+V77+’ 5 (even i).}
turbation theory should, in principle, be inapplicable. At the
same time, due to slightly different values of soliton veloci-
ties, initial distances between the solitons at which they ap
proach the overlapping point differ for the two solutions. If
the initial condition is given for well-separated solitons at the
same distance, they would overlap in different points, but th
shapes of these waves would be almost identical.

Note that the approximate solutions can be further im-
proved by adding terms of order, t in Egs.(30) and(31), 3V=—2e A coshs, (34

(33

These trains correspond to periodic solutions of the basic
equation(1) having a period\ and a characteristic soliton
length § (such as— A<8<A); as abovey=x—3t. Substi-
uting these expressions into E@2) yields a dispersion re-
ation
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which relates the velocity of a periodic wavet BV, in Eq. V. MODELING OF THE EVOLUTION OF INTENSE

(1) to the parameterd and é. INTERNAL WAVES BY A SEQUENCE OF SOLITONS
A general solution is described t_’Y the_Toda equalzs) The Gardner equatiofil) has important applications, in

correqulndmg to the frontal an(d tr)alllng kinks that are relatedparticular in physical oceanography for a description of non-

by the Baklund transform, Eq(22). In turn, these systems . . . ) :

have solitary solutions which can be considered as pairs c;'fr:::; g%gﬂgg‘é'%&??a\?s:eorf?éidhgillet'gefso rlr:l”n (é(l)oa}sséatlo

kinks and are essentially the envelope solitons with respegt .+ of a group of .solitons or a “soliborefe.g., [15)). A

to the solitons in the basic equatié®), modulating the se- . " . . " ) ; .
quences(33). A similar result has earlier been obtained for similar equation, with an addition of higher-order dispersive
| terms, was first used for this purpose by Lee and Beardsley

soliton lattices in the KdV equatiof3]. However, in the
present case, Eq&2) and(23) allow two different types of .[10] and subsequently_ by other authpdsld]. In SOme cases
; o it gives a better description of moderately nonlinear internal
localized structures that correspond to the excitation of Toda . . )
. ; ) ; . Wave forms than does the Korteveg—de Vries equation. Typi-
solitons either in one or in both subsystems. The respective ) ;
) cally, however, not enough observational data are provided
steady-state solutions are ; o . .
in publications to follow the evolution of a soliton group

upon propagation at large distances. One of the few excep-

0 (odd i), tions is the Coastal Ocean Probing Experim¢@OPB,
S(7)=iA+Vy+{ coslix(i—2)—B7] which was performed in 1995 on the northwestern shelf of
CosiiNi = B 7] (eveni), the United States, off the coast of Oregon. Very strong, tide-

generated internal waves were observed there in the form of

(35 a train of solitary wave$5,12,13. In this case the solitons

were so strong that no expansion of nonlinear terms leading

where 3/=—2e"* cosh 2 andg=e""*sinh 2\, and to Eq. (1) is, strictly speaking, applicable. However, as

shown in[5], Eg. (1), considered as a phenomenological
S(m=iA+Vy model, describes such strong solitons reasonably well be-
cause for strong solitons it predicts wider solitons than the

coshiA(i—2)—B7] ) KdV equation does, and the width of their solitary solution

costini— B7] (odd i), only slightly varies in a significant range of amplitudes; both

+ ) these features are consistent with the observational results.
costir(i—2—y)— B7] (even i) In the case considered, the water stratification contains a

coshiN(i—vy)—B7] ’ sharp vertical variation of density, a pycnoclifsee Fig. 2 of

(36) [5]), and its representation in the form of a two-layer model
gives a good approximation for the real density profile.
] ) Hence we further consider nonlinear internal gravity waves
where 3/=—2e " cosha, g=e "sinh 2\, and sinff\(1  in a two-layer fluid. In physical variables an equation similar
—)]=€*’sin{\*(1+7)]. Due to the symmetry of the sub- to Eq. (1) reads(see, e.g.[5))
systems, odd and even numbersifor these expressions can
be transposed. Note that in the first cade, =2\, whereas an an an ,97 S 7
in the secondg and y are independent parameters. o TCo tan e+ 5 =0. (37)
In the first of these envelope waves, E85), the kinks in
one of the subsystenifrontal or trailing kinkg are eventu- Here 7 is the deviation from equilibrium of the liquid inter-
ally shifted at the distance of\while the second subsystem face,c= \/g(Ap/p)h;h,/(h;+h,) is the propagation veloc-
remains unperturbed. These waves represent a sort of “exty of a long wave in the linear approximatiom,= 3c(h,
change:” after the transition, the initial soliton widths be- —h;)/h;h, and a1=(30/8h§h§)[hf+ h§+ 6h,h,] are the
come the distances between them and vice versa. Thesgegefficients of nonlinearity3=c h;h,/6 is the dispersion
modulation waves may be called “envelope kinks.” coefficient,h;, h, are the thicknesses of the upper and lower

In the waves described by E(36) both subsystems of |iquid layers, respectively, antip/p is the relative difference
kinks are shifted at the same distance af 4n this case of liquid densities.
wave profiles in the initial and final states are the same. Such By substituting the variables
waves can naturally be called envelope solitons.

Envelope solitons and kinks can interact in the same way a  BYH(6ay)%? (62 B)1?
as it occurs in the basic Gardner equation. Moreover, due 107~ | 5 | P+ 1=t 5=, x=cthx'— =,
their exponential asymptotics, approximate equations de- (39
scribing these interactions must again be Toda syst@®)s
and (23), which have solutions in the form of “second- into Eq.(37), we obtain Eq(1).
order” solitons and kinks. Continuing this process, a “hier-  From observations, we accept the following governing pa-
archy” of multiperiodic envelope waves can be constructedrameters for the two-layer modelh;=7 m, h,=143 m,
It should be accentuated that the specifics of the considereghd Ap/p=3X 10 2. Then we obtaink=9.82x10 2 s 1,
solitons as compounds of kinks are reproduced at each level;=0.35x 102 (ms)™!, B=76 n?/s, and c=0.458 m/s;
of such hierarchy. hence, for the maximal soliton in dimensional variables,
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30 T T T T T T T T

Dmax=ala;=28 m andV.=c+ a?/6a;=2c. Maximal ob-
served soliton amplitudes(depressions of pycnocline
reached 25-27 m; i.e., in the framework of E§7), these 25 Aolp = 3x1072 .
amplitudes are close to critichFor modeling of an internal
wave evolution, the records were taken from the COPE date , | g
for 26 September 1995 at two points: measurements a !
about 25 km from the shorelif&] (site 1 and 20 km closer

to the shoreling13] (site 2. To apply Eq.(2), the time series £
at each of these points was recalculated to get the initial”
condition n(x,t=0) by multiplying all time scales by the 10|
limiting soliton velocity Z.

According to the above theory, we approximated each
solitary wave as a pair of kinks. To determine the initial ,‘,
coordinates of the kinks, we used the experimental record:s N w u u w
for impulse amplitudes and for time intervals between their e A ‘\:\“‘J\:' ¥ e T

maximums at site 1. The Corresponding dimensionless dis: 1000 2000 3000 4000 5000 6000 7000 8000 9000
tancesS;, ;—S; between two kinks composing one and the Time®

=

E___-
e
‘:Q

same soliton(i.e., i is odd andi+1 ever) were found ac- FIG. 3. Initial condition for the soliton group approximating a
cording to the formula that follows from expressi®#) with  cOPE experiment observation. Dashed line: experimental data.
A determined from the measured amplitudes: Solid line: their approximation by Ed2).
—s—| 1+aAi/ay 39 perimental observatior[$,12] and solid line an approxima-
Si1—S=In 1= aA ] ) (39 . . . "
ahAjlag tion of the experimental data according to E8). Figure 4

. _ _ . _ i shows the corresponding results of the calculation for the
whereA, is the dimensional amplitude of théh soliton. same soliton group at a distance of 20 km. In general, the
_The distance between the neighboring kinks that belong tg,nroximate and numerical results are quite similar in both
different solitons S, —S; at eveni, is determined as a dis- cages. In particular, the total duration of the group is practi-
tanceAx;,; between the maxima of the corresponding im-ca|ly the same, and the order in which the solitons follow
pulses minus the half-sum of the distances, @9), deter-  gach other differs only for the seventh and eighth impulses in
mining the widths of these impulses. The distandes; .1 Fig. 4(a), where they have already overlapped, unlike in Fig.
are calculated from the measured time internzats;.; be-  4(p). The differences are due to a small difference in soliton
tween soliton maximums at site 1 as speeddthe same effect is seen in Fig. 2 for the two-soliton
AX o =V AL (40) interactior), which can be considered as a measure of error
R in the approximate description. Anyway, for such a large
distance(between 100 and 200 characteristic lengths of a

Here, as aboveY.,=2c. The resulting kink coordinates at ! | ! _
soliton), the agreement can be considered to be quite satis-

site 1 were taken as the initial condition.
The system of first-order ODEs, E(@®2), was solved nu- factory. _ . o _

merically. We modeled the evolution of the groups of nine /AS S€en from comparison with the initial stdfgg. 3), the

impulses(actually, the observed sequence was even longeBrOUP undergoes pronounced changes in the course of propa-

but beginning from the tenth impulse, the impulses aredation:  the relative positions _of solitons haye significantly

seated on a longer tidal depression pedestal and significantifanged. Also, the total duration of the soliton group has

overlappedl Calculation results were verified in two ways: ncreased from about 5000 s to about 7000 s. Indeed, as
first by direct computations of the basic equati@T) and known, interactions of soliton pairs always lead to energy

then by comparison with the internal wave records at therflow from the rear soliton to the forward one and, as a result,
mistor site 2 after passing 20 km toward the shore. to the acceleration of the lattépositive phase shift this

Figure 3 shows the initial sequence used for calculation&€Sults in an effective stretching of the group. _
according to the above theory and for numerical calculations Figure S gives the idea of observational results for site 2.

from the basic equation. The dashed line corresponds to eXt Was plotted by using an isotherm restored from the ther-
mistor chain data obtained by Trevorrow for the same soliton

group in the same way as for the data includefllig]. Com-

Un direct calculations for the two-layer mode.g..[16]) as well ~ Parison with Fig. 4 shows major similarities in what regards

as in strongly nonlinear evolution equatidri], the limiting soli- the disposition_of solitons on the_ time a_xis. .
tary wave amplitude also exists, but for a small density jump it is NOt€ that this behavior is radically different from that in

close to fi,— h;)/2. In our case it is about 68 m rather than 28 m in the KdV case, in which solitons tend to acquire the ampli-
the Gardner model. However, for the amplitudes considered, th&udes linearly decreasing along the group. The main discrep-
solitons are already significantly wider than those in the corre2nCy between the theoretical model and the experirtfent
sponding KdV equation, and the Gardner equation gives a gooROth sites 1 and)2is a an almost twofold difference in du-

phenomenological description of them for amplitudes close toration of impulseg2—3 min in experiment and 1-1.5 min in

Tmax- theory); also, the total group duration increases stronger than
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (s) Time (s}
30 ' ' ' T T T ' T FIG. 5. Experimentally observed resulting distribution at a 20
b) km distance(dashed ling and its approximation by Ed2) (solid
line).

25 b

Gardner equation, the equations for kink interactions are re-
duced to two Toda systems in which the kink phases propa-
gate at a “group velocity,” 3 times the velocity of an indi-

201 A

E®r ] vidual soliton. Comparison with the exact two-soliton
= solution shows that exact and approximate equations have a
ok i similar structure, and their solutions coincide in the first ap-

proximation and remain close to each other in a wide range
of parameters of the solitons. Also, such collective structures
as envelope kinks and solitons have been described. The

VJ U u L,J UUU theory is further applied to multisoliton interactions to be
0 compared with direct computations of the Gardner equation.
o e mm  sme e  tme e 7o sa 000 These results are obtained for soliton groups modeling the

Time (5) real observational data on multisolitonic internal waves in

the coastal ocean.

Finally, it should again be emphasized that the integrable
Gardner equation was chosen in order to compare the ap-

in the theory. This is due to the limited applicability of the Proximate and exact solutions, whereas the method itself is
Gardner equation: in more realistic strongly nonlinear’relevant to the feature of integrability: it is based on soli-

models[17] the solitons are broader and are supposed tdon (kink) asymptotics that. can be found fr_om linearization
interact longer, due to a smoother dependence of soliton vé&f @ stationary ODE describing the soliton in any model, as
locities on their amplitudes. Note also that observational daty/as demonstrated earlier by the direct perturbation method

for the site 2 were available for a deeper isotherm than fofl- It iS planned to apply this approach to nonintegrable
site 1: this, along with possible attenuation, is a possibl€duationse.g., those developed recently for strongly nonlin-
gar internal wave$14,17) and to take into account other

cause of the decrease of the amplitudes of all impulses in th X e )
group in site 2 in comparison with site 1. perturbing factors such as small losses and cylindrical diver-
gence of wave fronts.

FIG. 4. Resulting distribution at a 20 km distanceéa) approxi-
mate solution andb) numerical solution.

VI. CONCLUDING REMARKS
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